6  Land and Climate Data

6.2 Open-Data Platforms

6.2.1 Climate Data from NOAA Physical Sciences Lab

A snapshot of NOAA’s Physical Sciences Lab’s portal for gridded climate data access

This website provides several land and climate variables such as: CPC Global Unified Gauge-Based Analysis of Daily Precipitation, CPC Global Temperature, NCEP/NCAR Reanalysis, Livneh daily CONUS near-surface gridded meteorological and derived hydrometeorological data.

6.2.2 DAYMET: Daily Gridded Weather and Climate Data for North America [1 km x 1 km]

Daymet Webpage for Gridded Climate/ Weather Data Access

Daymet Webpage for Gridded Climate/ Weather Data Access

Daymet provides long-term, continuous, gridded estimates of daily weather and climatology variables at 1 km grid resolution for North America. The dataset is available in several forms, including monthly and annual climate summaries, in addition to the daily and/or sub-daily climate forcings: 

  1. Sub-daily Climate Forcings for Puerto Rico

  2. Daymet Version 4 Monthly Latency: Daily Surface Weather Data

  3. Annual Climate Summaries on a 1-km Grid for North America, Version 4 R1

  4. Monthly Climate Summaries on a 1-km Grid for North America, Version 4 R1

  5. Station-Level Inputs and Cross-Validation for North America, Version 4 R1

  6. Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1

Daymet Resource for Daily, 1 km Surface Weather Data Download

6.2.3 CHIRPS Global Precipitation [~5 km x 5km]

Snapshot of the web portal for CHIRPS-2.0 (Climate Hazards InfraRed Precipitation with Station data, version 2) data access

6.2.4 GIMMS MODIS Global NDVI [~225 m x 225 m]

Global Inventory Modeling and Mapping Studies (GIMMS) portal for global MODIS (Terra & Aqua) NDVI access

6.2.5 Climate Prediction Center

FTP portal for NOAA’s Climate Prediction Center (CPC) data access

Includes several variables including (but not limited to):

  • Climate Prediction Center (CPC) Morphing Technique (MORPH) to form a global, high resolution precipitation analysis

  • Joint Agricultural Weather Facility (JAWF)

  • Grid Analysis and Display System (GRADS): Global precipitation monitoring and forecasts, Tmax, Tmin

  • Input variables for US Drought Monitor (USDM)

6.2.6 Soil Texture for CONUS [30 m x 30 m]

Probabilistic Remapping of SSURGO (POLARIS) is a database of 30-m probabilistic soil property maps over the Contiguous United States (CONUS) generated by removing artificial discontinuities in Soil Survey Geographic (SSURGO) database. using an artificial intelligence algorithm (Chaney et al. 2016, 2019). Estimates provided by POLARIS include soil texture, organic matter, pH, saturated hydraulic conductivity, Brooks-Corey and Van Genuchten water retention curve parameters, bulk density, and saturated water content for six profile depths, namely, 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm. 

6.2.7 NASA AρρEEARS

Interface for the Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS)

Climate/ land data variables can be extracted for an area or a point using the interactive interface. Click on point samples/ area samples:

Start a new request

Start a new request

Select the variable and Lat-Long/ area of interest

Select the variable and Lat-Long/ area of interest

6.3 Programmatic Data Acquisition

In the HTTP, FTP or HTP links provided before, one can download a file by clicking on the individual hyperlink. Alternatively, we can use download.file function to download the file programmatically in R. This help us by opening the path to automate download and processing of multiple files with minimal supervision.

6.3.1 Downloading Raster files

Let us take an example of us_tmax data available at: https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/

Right-click on the raster file for 20240218, and copy the file path. We will then use this link to access the files programmatically using Client URL, or cURL - a utility for transferring data between systems. We will download the raster using download.file to local disk, and saved with a uder-defined name tmax_20240218.tif.

Copied link: https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20240218_float.tif

# Copied path of the raster
data_path <- "https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20240218_float.tif"

# Download the raster using download.file, assign the name tmax_20240218.tif to the downloaded 
download.file(url = data_path, 
              method="curl",
              destfile = "tmax_20240218.tif")  

# Plot downloaded file
library(terra)
tempRas=rast("tmax_20240218.tif")       # Import raster to the environment 
usSHP=terra::vect(spData::us_states)    # Shapefile for CONUS

plot(tempRas)
plot(usSHP, add=TRUE)

Now that we have the tmax_20240218 raster, let us extract the values for certain selected locations: s

# Import sample locations from contrasting hydroclimate
library(readxl)
loc= read_excel("./SampleData-master/location_points.xlsx")
print(loc)
# A tibble: 3 × 4
  Aridity   State     Longitude Latitude
  <chr>     <chr>         <dbl>    <dbl>
1 Humid     Louisiana     -92.7     34.3
2 Arid      Nevada       -116.      38.7
3 Semi-arid Kansas        -99.8     38.8
# Value of the lat & lon of the locations
latlon=loc[,3:4] 
print(latlon)
# A tibble: 3 × 2
  Longitude Latitude
      <dbl>    <dbl>
1     -92.7     34.3
2    -116.      38.7
3     -99.8     38.8
# Extract time series using "terra::extract"
loc_temp=terra::extract(tempRas,
                         latlon,               #2-column matrix or data.frame with lat-long
                         method='bilinear')    # Use bilinear interpolation (or ngb) option

print(loc_temp)
  ID tmax_20240218
1  1      12.58291
2  2      11.52682
3  3      13.41145
# Add temperature attribute to the data frame as "temp"
loc$temp=loc_temp$tmax_20240218
print(loc)
# A tibble: 3 × 5
  Aridity   State     Longitude Latitude  temp
  <chr>     <chr>         <dbl>    <dbl> <dbl>
1 Humid     Louisiana     -92.7     34.3  12.6
2 Arid      Nevada       -116.      38.7  11.5
3 Semi-arid Kansas        -99.8     38.8  13.4
# Export the modified data as CSV
write.csv(loc, "df_with_temp.csv")

6.3.2 Raster Mosaic

Lets explore raster files for mean clay percentage for top 5 cm soil profile accessible through: http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/. The link provides rasters for 1x1 degree areal domain.

library(spData)
# Note the spatial extent of Louisiana State. We need corresponding raster files
ext(spData::us_states[spData::us_states$NAME=="Louisiana",]) # ext function gives extent of the rast/vect object
SpatExtent : -94.042964, -89.066617, 28.991623, 33.019219 (xmin, xmax, ymin, ymax)
pth1="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-91-90.tif"

# Download the raster using download.file
download.file(url = pth1, 
              method="curl",
              destfile = "lat3031_lon-90-89.tif")  

# Import the downloaded raster to workspace
r1=rast("lat3031_lon-90-89.tif")

# Fetch shapefile for Louisiana from spData package
LAvct=vect(spData::us_states[spData::us_states$NAME=="Louisiana",])

# Plot downloaded raster against the map of Louisiana. Note that the raster fits 1x1 grid
plot(LAvct, col="gray90")
plot(r1, range=c(0,100), add=TRUE)
grid()

# Crop raster to smaller region of interest for easy visualization
#~~~ We will crop raster to a user-defined extent
r1crp=crop(r1, ext(c(-91,-90.8,30,30.2)))   

# Explore a smaller subset of the dataset
#~~~ Can you identify the Mississipi flood-plain using the clay percentage? 
library(mapview)
mapview(r1crp,                           # Raster to be plotted
        at=c(0,10,20,30,40,50,60,75),    # Legend breaks
        map.types="Esri.WorldImagery",   # Select background map 
        main="Clay % (0-5 cm profile)")  # Plot title

We note that the raster files in POLARIS are available for a 1x1 areal domain. For an analysis for a large spatial extent, multiple smaller rasters can be “stitched” together to generate a larger mosaic of rasters. We will use the terra::mosaic function to generate a mosaic of several smaller rasters of percentage clay content in 0-5 cm soil profile in Southeastern Louisiana. This function requires the user to specify the summary function (“sum”, “mean”, “median”, “min”, or “max”) to be applied on the overlapping pixels from 2 or more rasters. Let us download some more rasters from POLARIS and mosaic them together.

“Beware of the dog” mosaic (Pompeii, Casa di Orfeo) is made of several constituent pieces.

“Beware of the dog” mosaic (Pompeii, Casa di Orfeo) is made of several constituent pieces.
# Links to soil texture rasters 
pth2="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat2930_lon-91-90.tif"
pth3="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-90-89.tif"
pth4="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-92-91.tif"

# Download the raster using download.file function
download.file(url = pth2, 
              method="curl",
              destfile = "r2.tif")  

download.file(url = pth3, 
              method="curl",
              destfile = "r3.tif")

download.file(url = pth4, 
              method="curl",
              destfile = "r4.tif")  

# Import downloaded files to workspace
r2=rast("r2.tif")
r3=rast("r3.tif")
r4=rast("r4.tif")

# DIY: Plot the downloaded raster against the map of Louisiana
# plot(LAvct)
# plot(r1, range=c(0,100), add=TRUE)
# plot(r2, range=c(0,100), add=TRUE, legend=FALSE)
# plot(r3, range=c(0,100), add=TRUE, legend=FALSE)
# plot(r4, range=c(0,100), add=TRUE, legend=FALSE)

# Raster mosaic
r_mos=mosaic(r1,r2,r3,r4, fun="mean")

# Plot raster mossaic
plot(LAvct, main="Clay % [0-5 cm depth]",axes=FALSE, col="gray90")
plot(r_mos, range=c(0,100), add=TRUE)
plot(LAvct, add=TRUE)
grid()

For easy post processing access, its a good practice to save the processed dataset on disc as either a raster or netCDF.

# Export raster to disc
terra::writeRaster(r_mos, "clayPct.tif",
                overwrite=TRUE) # Overwrite if the file already exists?

# Or export as netCDF
terra::writeCDF(r_mos, "clayPct.nc", 
                overwrite=TRUE) # Overwrite if the file already exists?


# Optional: Add more information to the exported netCDF
# terra::writeCDF(r_mos,             # SpatRaster to export
#          "clayPct.nc",             # Output filename
#          varname="clayPCT",        # Short name of the variable
#          unit="%",                 # Variable units
#          longname="Clay Percentage, 0-5 cm, POLARIS", # Long name of the variable
#          zname='[-]')              # Z-var name (None, since we export a single layer)

6.3.3 Downloading netCDF

We will now download a netCDF of global daily precipitation for the year 2023 from CHIRPS, accessible through the link: https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/chirps-v2.0.2023.days_p05.nc

# Copied path of the raster
data_path <- "https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/chirps-v2.0.2023.days_p05.nc"

# Download the raster using download.file, assign the name "daily_pcp_2023.nc" to the downloaded 
if (file.exists("daily_pcp_2023.nc")==FALSE){
  
 download.file(url = data_path, 
              method="curl",
              destfile = "daily_pcp_2023.nc") 
  
}

# Plot downloaded file
library(terra)
pcp=rast("daily_pcp_2023.nc")       # Import raster to the environment 
print(pcp) # Notice the attributes (esp. nlyr, i.e. number of layers, unit and time)
class       : SpatRaster 
dimensions  : 2000, 7200, 365  (nrow, ncol, nlyr)
resolution  : 0.05, 0.05  (x, y)
extent      : -180, 180, -50, 50  (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84) 
source      : daily_pcp_2023.nc 
varname     : precip (Climate Hazards group InfraRed Precipitation with Stations) 
names       : precip_1, precip_2, precip_3, precip_4, precip_5, precip_6, ... 
unit        :   mm/day,   mm/day,   mm/day,   mm/day,   mm/day,   mm/day, ... 
time (days) : 2023-01-01 to 2023-12-31 
head(time(pcp))  # time variable in the netCDF indicating corresponding time of acquisition
[1] "2023-01-01" "2023-01-02" "2023-01-03" "2023-01-04" "2023-01-05"
[6] "2023-01-06"
worldSHP=terra::vect(spData::world)    # Shapefile for CONUS

# Plot data for a specific layer
plot(pcp[[100]])   # Same as pcp[[which(time(pcp)=="2023-04-10")]]
plot(worldSHP, add=TRUE)
points(latlon, pch=19, col="red")